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Multibody Simulation in an
Object Oriented Programming Environment

N.Sreenath! P.S. Krishnaprasad?

Abstract : A maultibody system simulation architecture capable of generating the
dynamical equations of the multibody system symbolically, automatically create the
computer code to simulate these equations numerically, run the simulation and graph-
ically display the results is discussed. The power of object oriented programming is
used systematically to manipulate the symbolic, numeric and graphic modules and
produce an effective tool for understanding the complicated motions of multibody sys-
tems. The architecture has been implemented for planar two and three body systems
in OOPSS (Object Oriented Planar System Simulator) a software package written
in Zeta-Lisp. The package is supported by a nice user interface which has the ca-
pability to interactively modify system parameters, change runtime initial conditions
and introduce feedback control. Plans are underway to implement the architecture

for complex multibody systems.

1 Introduction

A multibody system is simply a collection of bodies, rigid or non-rigid, intercon-
nected by means of joints with certain specific kinematic properties [25]. A large class
of mechanical systems can be classified as multibody systems. We list here a few ex-
amples : spacecraft, robot manipulators, land vehicles (automobiles etc.), the human
body, molecular interconnection of atoms, cables modeled as series of rigid bodies etc.,
[26]. A planar multibody system is a multibody system with motions of the system
restricted to a plane. To study the motions of multibody systems the knowledge of

the dynamics of the system is essential. The dynamics of a multibody system cannot
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be adequately approximated by linear differential equations, since large motions are
characteristic of such systems. Further complications arise with the introduction of
control variables, and, external and internal disturbances.

Simulation has been one of the important tools for understanding the motions
of a multibody system. The steps involved in simulating the motions of a complex
multibody system are as follows. First, one generates a dynamical model of the
multibody system in the form of differential equations. Next a simulation program
for numerically integrating these differential equations is created. Then the simulation
code is run for a relevant set of parameters and a specified initial state of the system
to compute the trajectory of the system.

Thus the primary step in understanding the motions of a multibody system is the
formulation of the dynamical equations. For the case when the system is in the form
of an open kinematic chain (Figure 1) , i.e., the path from one body in the system to
any other body in this system is unique, and each body in the system can be modeled
as a rigid body, we get a set of coupled, highly nonlinear first or second order ordinary
differential equations.

Multibody dynamical formalism has been the subject of a lot of research [4], [7],
(8], [12],[14], [17], [19], [21], [28], [24], [25]. The formulation of dynamical equations by
hand is a tedious process and often prone to errors. Many researchers have considered
the possibility of computer-aided methods to generate these equations. General pur-
pose multibody computer programs capable of generating the dynamical equations as
well as simulating them are available for quite sometime. See [18], [21] for references.

These computer-oriented methods may be classified as numerical [5], and symbolic
programs [1}], [3], [13], [15], [18], [20], [23], [25]. Numerical programs are characterized
by numerical digital computation whereas symbolic programs generate equations and
accompanying expressions in symbolic (or alpha-numeric) form on the basis of alpha-
numeric data. Symbolic programs in general are more efficient in terms of running
time in comparison with numerical programs [21], [27].

In this paper we present a general purpose software system architecture designed



to generate the dynamical equations of a multibody system symbolically ® , automat-
ically generate the computer code to simulate these equations numerically, run the
simulation and display the results graphically. This architecture is implemented for
planar two and three body systems in the package called OOPSS - Object Oriented
Planar System Simulator. A nice user interface is part of OOPSS.

The paper is organized as follows. In Section 2 we discuss the system features, fol-
lowed by a brief exposition on multibody dynamics in Section 3. The Object Oriented
Programming methodology and the software architecture of OOPSS is discussed in
Section 4. Section 5 discusses the implementation of OOPSS architecture for planar

two and three body systems followed by the conclusion in Section 6.

2 System Features

OOPSS uses Object Oriented Programming along with symbolic manipulation
to formulate and simulate the dynamics of a planar multibody system automatically.
A mathematical model describing the motion of a planar multibody system (dynamic
model) is generated by OOPSS symbolically. The symbolic manipulation has been
implemented in MACSYMA®. A program to numerically simulate these differential
equations is generated. OOPSS animates the multibody system by exploiting the
high resolution graphics and windowing facilities of a LISP machine and has been
implemented in Zeta-Lisp on a Symbolics 3600 ® series machine. A nice user inter-
face is provided for interacting with the symbolic, numeric, and graphic elements of

OOPSS.

Users can interactively :

(i) choose any kinematic or physical parameters for the system,

30nly multibody systems connected in the form of a tree (Figure 1) with pin joints are consid-
ered here.

*MACSYMA is a trademark of Symbolics Inc., Mass.

Smanufactured by Symbolics Inc., Mass.



(ii) change any runtime initial condition - system energy, system angular
momentum, time step, maximum problem time, initial values of state

and other variables (angles, conjugate momentum variables),
(iii) select display parameters for the graphs,

(iv) choose feedback control torque laws and gains.

One of the significant features of OOPSS is that various control schemes can be
easily implemented and evaluated. Currently proportional, proportional-derivative,
sinusordal-spring, and, sinusoidal-spring with bias, feedback control schemes have
been implemented. These control laws can be interactively selected, evaluated and
the control gains tuned. A model-dependent control scheme, for example exact lin-
earization [9], [10], could be easily implemented since the associated feedback control
law could be formulated using symbolic computation.

OOPSS can be used a design tool to design the multibody system parameters. It
can be used as an experimental work-bench to study certain problems of mechanics.
To enhance our knowledge about the phase space of a multibody system, we could
simulate the equilibria of the multibody system and explore the stability of such

equilibria.

3 Multibody Motion

Before embarking on the description of the OOPSS system it is necessary to in-
troduce the various vectors, parameters and variables associated with the motion of a
multibody system. Associated with every body in the system are physical parameters
like such as mass, inertia and various kinematic parameters. The vectors connecting
the a joint and the center of mass of the body, and, the same joint and a correspond-
ing joints on an adjacent body, provide information on the kinematic description of
the multibody system. Since the individual bodies are considered rigid, at any time
instant, the orientation of the body and the location of its center of mass provides suf-

ficient information to determine the configuration of the body. Other quantities such
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Figure 1: Multibody system connected in the form of a tree

as angular velocity and angular acceleration are associated with each body, and quan-
tities such as kinetic energy, angular momentum and linear momentum are associated
with the multibody system itself ©.

The motions of the ﬁlultibody system are defined with respect to an inertial co-
ordinate system. For a planar multibody system, a local coordinate system is defined
for every body in the system and an angle this coordinate system makes with respect
to the inertial coordinate system is the inertial angle associated with the body. The
angle between the local coordinate systems of two bodies is the relative angle between
the two bodies.

The dynamics of a planar multibody system connected in the form of a tree can
be described by a set of first order differential equations in terms of the Hamiltonian

of the system H 7 (which is also the kinetic energy of the system) [21] , the relative

7To define the multibody system mathematically it is necessary to label every body and every
joint in the system uniquely in increasing order of consecutive integers. Also for simplicity of com-
putation it is convenient to label the bodies such that the body labels are of increasing magnitude
along any topological path starting at body 1; the joint connecting a body ¢ to the body with a
lesser body-label is labelled as joint (i-1). The joint (i-1) is also known as the previous joint of
body 1.

7See Appendix 1 for a planar two body system dynamics example.



angles 6; ; between the bodies, and the conjugate momenta g;.

4 System Description

OOPSS is implemented using the Object Oriented Programming (OOP) tech-
nique. We start with a brief introduction to the OOP methodology and discuss the
important flavors, methods, and functions used in the program. The system

architecture is discussed next.

4.1 Flavors, Methods and Functions

Objects are entities that combine the properties of procedures and data, since
they perform computation and save local state [22]. Also, objects could be linked to
real world things. A program could be built using a set of objects. In OO.P we have
uniform usage of objects whereas conventional programming uses separate procedures
and data. Sending messages between objects causes action in OOP. Message sending
is a form of indirect procedure call and supports deta abstraction. The inheritance
property in OOP enables the transmission of changes at a higher level to be broad-
cast throughout the lower levels. Functionality encapsulation and the inheritance
properties enable the designer to create reusable software components termed as the
Software-IC’s in OOP [2].

We have used Zeta-Lisp a programming language capable of object oriented pro-
gramming. General descriptions of objects in Zeta-Lisp are in the form of flavors.
Flavors are abstract type of object class. In Zeta-Lisp a conceptual class of objects
and their operations are realized by the Flavor System, where part of its implemen-
tation is simply a convention in procedure calling style; part is a powerful language
feature, called Flavors, for defining classes of abstract objects. Flavors have inhers-
tance property; thus if we build a flavor using other flavors then all the properties of
the latter are inherited by the former. Any particular object is an nstance of a flavor.

The variables associated with a generic object are known as instance variables.



Specific operations could be associated with the objects using methods. One can
create a method to define a specific operation on any instance of a flavor and attribute
special properties to it. For instance, one can define a method for a body which is
the leaf of a tree and so has only one joint (i.e., only one body attached to it -
contiguous to and inboard) whereas a generic body has two or more bodies attached
to it. Functions are used to send messages to instances of flavors through the already
defined methods.

The OOP methodology is conducive to building iconic user interfaces since all
except the necessary information can be hidden so as to limit clutter and enhance
clarity of the issues under consideration. Methods provide the basic abstraction of-a
class of the objects via the tnheritance property of the OOP.

In the planar multibody setting the primary flavor used to describe a generic body
in the system is :

general-planar-body

A generic body in the planar multibody system can be defined as an object with
the following instance variables : a vector connecting the previous joint to the center
of mass of body, vector(s) connecting the previous joint and other joint(s) on the
body, and, the angle made by the body frame with respect to the inertial coordinate
system (also called orientation of the body).

The center of mass of a generic body is defined by the use of the method :center-
of-mass, this ensures that at any time instance knowing the location of the previous
joint and the orientation of the body, the body center of mass could be calculated.
The information about the orientation of the body is calculated in the Numerical
Simulator using the dynamical equations. The position of the next joint is defined
by using the method :next-joint. Note here that the next joint of one body will be
the previous joint of another body.

Similarly the :draw-body method is used to draw the generic body for animation
on the screen. This method utilizes the center of mass, the next joint information,
and the orientation of the body to create the animation of the multibody motion.

Another flavor
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Figure 2: Block diagram representation of OOPSS

graphics-window-frame
is implemented to create the graphics window and the various panes associated
with it, for animation and data display purposes. Tﬁis flavor also implements the
meny and mouse selectable capabilities for the OOPSS system. A number of functions
are implemented to send messages to the flavors; a few important functions are listed
and their functions are self explanatory : set-parameters, set-window-frame, on-line-

info, show-herald, etc.

4.2 System Architecture

The OOPSS system can be represented by : Symbolic Equation Generator,
Numerical Simulator, Descriptor, and, Display modules which are intercon-
nected as shown in Figure 2. A detailed description of each module is given in the

following paragraphs.

4.2.1 Symbolic Equation Generator

The symbolic equation generator generates the dynamics of a planar multibody

system connected in the form of a tree structure in the Hamiltonian setting (see



Sreenath [21] Chapter 3, for the formulation and notation). This module is im-
plemented in MACSYMA. The input data for this module consists of information
describing the way the bodies are interconnected, kinematic and physical parameters
like lengths, mass, inertia etc., any control (actuating) or disturbance torques acting
on the multibody system. For a two body system example one form of the output

equations from this module are shown in Appendix 1.

4.2.2 Numerical Simulator

The Numerical Simulator which simulates the dynamical equations generated
by the symbolic equation generator, has been implemented using FORTRAN-77 run-
ning on the LISP machine. The Numerical Simulator needs numerical values of
all parameters to be in an data file. This input data file is generated by the DE-
SCRIPTOR. The file contains the numerical values of all kinematic and physical
parameters, the system angular momentum and system energy values, problem time,
time step etc., associated with the particular example.

The state and related variables (for example, angular velocities) at any instance
of time could be passed onto the DISPLAY module by means of lispfunctions to
be used for animation and display purposes. The lispfunction — displaybody passes
the relevant variables like orientation, angular velocities of the bodies etc., from the
FORTRAN program to the DISPLAY module for animating the motion of the
multibody system. The function ‘displayboedy’ is implemented in Zeta-Lisp in the
DISPLAY package for the actual animation.

The initial condition for initiating the simulation is chosen such that the the vari-
ous physical laws governing the conservation of select quantities (like system angular

momentum, system energy) are satisfied.

4.2.3 DESCRIPTOR

The DESCRIPTOR consists of descriptions of various flavors to implement

the display and the user interface. It also contains flavors to define a generic body



in the multibody system. Using methods we can attribute special properties to the
instances of these flavors. This module also functions as an intermediary between the
user interface and the Numerical Simulator module by generating the input data
file for the FORTRAN program before a numeric simulation run is started, based on

input from the user.

4.2.4 DISPLAY

The DISPLAY module is the implementation of various functions to drive the
instances of flavors by sending messages to them. DISPLAY keeps track of sending
proper messages to the relevant panes as and when it receives data from the Numer-
ical Simulator module. DISPLAY is characterized by a ‘tv:alu-zor’ option which
helps in erasing the display at time ¢ and creating a new display at time ¢t + At. ‘dus-
playbody’ and ‘cleanbody’ are functions to display the system and clean the displayed
picture off the relevant pane respectively.

The user interface consists of a window with many panes (Figure 3). Three frames
of references in the corresponding window panes: inertial frame of reference and two
other selectable frames (from various joint and/or body frames), have been imple-
mented. The animation of the multibody system in the selected frames of reference
are displayed in their respective panes. A part of runtime data from the FORTRAN
program is displayed in the message pane. Graphs of state and/or other variables
are drawn as functions of time in the simulation pane. The menu pane which is
in the lower right hand corner is self descriptive. Every item in this pane is mouse
sensitive (mouse selectable). We will say more on this in the following sections as we
deal with particular examples of planar two-body and planar three-body systems. A
brief online HELP facility exists and information can be got by clicking left using the

mouse when it is highlighted.

5 Implementation
Presently the OOPSS system architecture has been implemented for the planar

10
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Figure 4: Planar two body system

two-body and the planar three-body systems. The following examples illustrate the
capabilities of the OOPSS system.

5.1 Two-Body System

A system of two bodies in space connected together by a one degree of freedom joint
occurs in many contexts (Figure 4). One of the bodies, for example, may be a large
space based sensor (say a space telescope). Rapid re-orientation of the sensor from
one stationary position to another may be desirable. Such a “step-stare” maneuver
would require a through knowledge of the dynamics and thus a good mathematical
model ® to formulate the necessary control [16].

Figure 5.a shows the menu pane for this example. Clicking left on the mouse when
system parameters is highlighted gives Figure 5.b. Clicking left on Torque Law results
in Figure 5.c. Further clicking on Proportional-Derivative (P-D) torque law imple-
ments a joint torque law (internal torque) - a proportional sinusoidal biased spring
plus derivative controller, i.e., Tioine = (K,sin(fa; — Op;,5) + Kdég,l). Gains K,

(proportional gain) and Ky (derivative gain), 8, is the relative angle between body

8Refer to Sreenath [21] Chapter 4 for a detailed description of the problem.
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1 and body 2, and, the bias angle ;. could be chosen (see Figure 5.d) interactively

by the user.

The evolution of motion of a two body system with a fixed value of system energy
and angular momentum is given in Figure 6. The largest pane of the display window
is the Inertial frame where the motion of the system could be observed in the inertial
coordinate frame. Each body is represented by a stick figure with a big filled-in-circle
at one end (representing the center of mass of the body) and a smaller circle at the
other end representing the joint connecting the other body. The center of mass of the
multibody system is defined by the point in the center of the inertial frame. Since
no external force is present on the system the center of mass of the system is a fixed
point in inertial frame. Two other coordinate frames where the motion of the system
could be observed - the joint frame and the Body-1 frame® are also displayed below
the inertial frame.

The two-body system has two relative equilibria 1° when the bodies are in a
extended position (stable) and when the bodies are in folded position (unstable).
There is a homoclinic orbit associated with the unstable equilibrium point. The
stable equilibrium is displayed in Figure 7. The trace shown in the inertial frame is
the trace left by the joint as it moves in space. Simple calculation shows that this
trace is indeed a circle when the system is in stable equilibrium position. Figure 8
displays a trajectory when the system is at a point very near the unstable equilibrium
point. If a (P-D) torque is introduced in the system then the resulting trajectory is as
shown in Figure 9 (no bias) and Figure 10 (bias). Notice that with K, equal to zero
and K, positive (Figures 9-10) the system always goes to the stable equilibrium and
confirms the ‘stabilization theorem’ - Theorem 6.3.1 in Sreenath [21], i.e., introduction
of a feedback internal torque proportional to the rate of the relative angle stabilizes

the system. One could also interpret this result as follows: by introducing this torque

9The joint-frame is a frame parallel to the inertial coordinate frame with the origin at the joint;

the Body-1 frame is the local coordinate frame of body 1 located at the body center of mass.
10When all the bodies in the system are rotating with constant inertial angular velocity and no

relative motion we have relative equilibrium
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Figure 7: Two-body problem : stable equilibrium

law the energy in the system is dissipated till the system goes to a minimum energy

state which is the stable (stretched out) relative equilibrium.

5.2 Three-Body System

A general three-body example (Figure 11) has also been implemented on the basis
of the OOPSS architecture. Figure 12 shows a general three-body system wherein
the center of mass of the middle body is not along the line joining the two joints. The
filled-1n circles represents the center of mass of each body (the first body represented
by a big circle, second with a smaller circle and the third with the smallest circle).
Display frames could be chosen by clicking left on the ‘Choose display frames’ using
the mouse. Figure 13 displays special kinematic case where the center of mass of the
middle body is along the line joining the two joints. Joint torques of the proportional

sinusoidal bias spring plus derivative type has be introduced at the joints.

5.3 Complex Multibody Examples

Plans are underway to implement complex multibody system examples. As the
complexity of the examples grow one may find oneself limited by the processing ca-

pabilities of the currently available LISP machines. One could take advantage of the
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existing parallelism in these problems by utilizing the processing power of parallel
LISP processors. A Connection Machine ! may just serve the purpose. Thus dy-
namics of complex multibody systems may be generated automatically, simulated and

animated.

6 Conclusion

A prototype object oriented software architecture for multibody system simula-
tion is discussed. OOPSS can generate the dynamic model of a planar multibody
system symbolically, generate the computer code to simulate it numerically, run the
simulation and display the result by means of animation and graphs. OOPSS could
be used as a test-bed to evaluate control algorithms, select control gains, and design
the system parameters for the multibody system, interactively. The system has been
successfully implemented for planar two and three body systems on a Symbolics 3600
series machine in Zeta-LISP, FORTRAN-77 and MACSYMA. Plans are underway to

implement the OOPSS architecture for more complex multibody systems.

Umanufactured by Thinking Machines Inc, Cambridge, Mass.
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Appendix

We develop the dynamical equations of a planar multibody system in space in
terms of the Poisson bracket. The symmetries (translational and rotational) acting
on the system are taken into account to reduce the dynamics appropriately. We refer
the interested reader to Sreenath[23] and Sreenath, Oh, Krishnaprasad and Marsden
[25] for details and proof.

A tree connected multibody system in space (see Figure 1), with the total system
angular momentum conserved, is considered. The configuration space @ for such a
system is

Q = (S'x---xSHx R

N times

where N is the number of bodies in the system. One way of coordinatizing the system
on the tangent bundle 7'Q is by (6;,w;),¢ = 1,...,N. The Lagrangian can then be

written in these coordinates as

2

_ -..T el
L-2ng+ o

where w is the vector of angular velocities, p is the linear momentum of the center
of mass of the system, and J is the pseudo-inertia matrix associated with the system
and is a function of relative angles between the bodies 2.

The Hamiltonian is simply the kinetic energy of the system and can be constructed

using the Legendre transformation as

1 oo I p|?
H = /2371 L=
S AT

where p is the conjugate momentum vector and is related to w by

We now recognize the symmetries in the system and reduce the dynamics ac-
cordingly. The reduction technique we use is originally due to Arnold [1] and de-

veloped further by Marsden and Weinstein [17]. In the general setting one starts

12For example, for the case of planar two-body system J = J(f2,1).
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with a Poisson manifold P and a Lie group G acting on P by canonical transforma-
tions. The reduced phase space P/G (provided it has no singularities) has a natural
Poisson structure whose symplectic leaves are the Marsden-Weinstein-Meyer spaces
J W u)/G, ~ J7H(O)/G where pu € g*, the dual of the Lie algebraof G, J : P — g*
is an equivariant momentum map for the action of G on P, G, is the isotropy group
of p (relative to the coadjoint action) i.e., G, = {g €G : Ad;ip = ,u}, and O is

the coadjoint orbit through u. The coadjoint orbit O, is even dimensional.
Reduction by translations (planar multibody problems) :

We reduce the dynamics by the action of the translation group IR?. This group

acts on the original configuration space Q) by

v ((R(61),r1),...,(R(ON),rn)) = (R(61),r1+V),...,(R(ON),rn +V))

wherer;, 2 = 1,..., N is the vector from the origin of the frame of reference to the
center of mass of body i; ¢; is the angle made by the body ¢ with respect to the frame

of reference. R(6;) is the (2 X 2) rotation matrix associated with body 7 ,

R(6) cos(6;) —sin(6;) . ) N
s = 3 T = yee oy .
sin(6;) cos(6;)

The induced momentum map on T'Q is calculated by the standard formula

oL .

or on T*Q by

T = pi€y(q),
where £ is the infinitesimal generator of the action on Q. (see Abraham and Marsden

[2]). Coordinatizing @ by 6;, ¢+ = 1,..., N we determine,

Je = (p,§), £ € R

Thus J = p is conserved since H is cyclic in r and so is translation invariant. The

corresponding reduced space is obtained by fixing p = po and letting

PPo = J"l(po)/le,
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(see Chapter 4, Abraham and Marsden, [2],). But P, is clearly isomorphic to

T*(S' x --- x S) i.e. to the space of 6y,..., Oy and their conjugate momenta
N times
(#41,-..,un). The reduced Hamiltonian is simply the Hamiltonian as before with

p regarded as a constant.

We can adjust H by a constant and thus assume p = 0; this obviously does not

affect the equations of motion. Thus,

1
H = 4T3,
LA

Furthermore, the configuration space @ after reduction by translations i.e., reduction

to the center of mass frame is

Q = (S'x---x8Y.

N times

Reduction by Rotations :
The rotational symmetry group S* acts on the cotangent space as below :

9'((91a/1’1)a"'7(9Na/"N)) = ((91+9aru’1)7"'a(9N+97/v"N))
= ((61,p1), -+, (0N, inv))-

Since S* is diffeomorphic to SO(2) (the special orthogonal group of (2 x 2) matrices)
and the Lie algebra of SO(2) is so(2) (skew-symmetric matrices with determinant

not equal to zero), the momentum map can be viewed as a map
J : T*Q — s0*(2)

where s0*(2) is the dual of the Lie algebra of SO(2)
Let £ € s0(2), then exp(t{) € O(2). The infinitesimal generator £o(q) can now

be calculated as follows :

d
fole) = zﬁ‘l’(exp(tf),Q) li-o
- %(01+t,...,91v+t) s

= (1,...,1).
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The momentum map is given by
J:T'Q — s0%(2),
with the momentum P : TQ — IR
P(v,) = J(&)(v)

FL(vq) : fQ(Q)
= (vg,ée(g)) onTQ.

where F'L: TQ — T*Q is the fiber derivative.
The metric here is the Riemannian metric associated to kinetic energy and the

inner product ‘(, )’ is given by (z,y) = T Jy.

{l

P(v,) {((wi,..ywn), (1,000,1))

= [1,...,1]Jw on TQ,
or on T*Q, for oy € T*(Q we have
Play) = p1 + -+ + pn.
Le.,
J((O1,p1)s-- (BN un)) = p1 +-- 4 pn.

We now form the Poisson reduced space

P o= TS x - xSY/8"

N times

whose symplectic leaves are the reduced symplectic manifolds
P, = JYw)/S'CP

We coordinatize P by 0g 0y = 0 — 85y, £ =2,...,N,and pj, j =1,...N,
where J(k) is the body label of the body connected to body k and J(k) < k via the
previous joint (i — 1) (in Figure 1, J(5) =2,, J(3) =2 and J(2) = 1, etc.; also

see footnote on page 5).
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Topologically,

P = S'x---x S'xRN.
N

(N=1) times
The Poisson structure on P is computed in the standard way: take two functions
F(Or sy, k =1,...,N,puy,...,un) and H(Op i),k = 2,..., N, py,...,un). Re-
gard them as functions of 01,...,0n,u1,. .., un by substituting Ok ;) = 6 — 8(x)
and compute the canonical bracket.

We can now state our main theorem on the equations of motion of planar multi-

body systems connected in the form of a tree in terms of the non-canonical bracket.

Theorem A.1l : The dynamics of a multibody system, evolves over a reduced Poisson
space P coordinatized by 8 sy, ¥ = 2,...,N and ug, k£ =1,... N. Topologically

Pis S'x - x S' xIR". The system is Hamiltonian in the Poisson structure of P
N

N-1 times
with the non-canonical bracket given by :

G = S| (e e or ],

o L\Ouswy Ok ) 90k sk O (k) O 00k, 7(k)

where f,g: R*V"! 5 R.

The corresponding dynamics in terms of the bracket are

/lk = {/Lk,H} k:17"'>Nv

brory = {9k,J(k),H} k=2,---,N.
Proof : See Sreenath [23] Chapter 3.

Corollary A.1 : The sum of all the conjugate momentum variables u;, k& =
1,..., N is equal to the angular momentum of the multibody system, in the center

of mass frame.

Proof : See Sreenath [23] Chapter 3.

Planar Two-Body System
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The dynamics of a planar two body system with a torque o acting at the joint,

is given by the following equations :

oH

H1 = 892’1 + fZj'joint:,
. OH

H2 = _892’1 - Tjoint)

G _ oH _oH
S Oz 3#1-

The Hamiltonian (kinetic energy) of the planar two-body problem is given by

1

H = §[Ml,ﬂ2]J—1[M1,M2}T

where the J is a symmetric pseudo-inertia matrix dependent on the relative angle 65,
between the bodies. py and po are the conjugate momentum variables and are related

to the angular velocities wy and w, of the bodies as below:

251 ~ 3 Wi

H2 wa

Also,

U1 + p2 = s

where (i, is the angular momentum of the system, a conserved quantity.
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